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Abstract. The renormalisation group approach is applied to the study of the short-time critical behaviour of
the d-dimensional Ginzburg-Landau model with long-range interaction of the form pσsps−p in momentum
space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes
to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents
θ′ and θ of the order parameter and the response function respectively, are calculated to the second order
in ε = 2σ − d.

PACS. 64.60.Ht Dynamic critical phenomena – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

In recent years, much attention has been paid to the short-
time critical dynamics. The short-time phenomena arise at
times just after a microscopic time scale tmic needed by
the system to remember only the macroscopic condition
and to forget all specific microscopic details. The corre-
sponding time regime is also called critical initial slip in
order to distinguish it from the uninteresting microscopic
time interval between zero and tmic. Since the pioneering
analytical study of [1], universal short-time scaling has
been found in various models (see [2] and [3]). When the
system is quenched from a high temperature Ti to the
critical temperature Tc � Ti the order parameter shows
in the short-time regime a power law increase m(t) ∼ tθ

′

with a new universal critical exponent θ′.
The short-time dynamics has been thoroughly investi-

gated for models with short-range interaction (SRI). Since
the critical equilibrium properties are modified by the
presence of long-range interactions (LRI) it may be in-
teresting to know how the short-time critical behaviour
depends upon the interaction range. Experimentally, sys-
tems with LRI could be found in ionic solutions where the
Coulomb interaction is partially screened [4,5]. The long-
range interaction is important in some low-dimensional
systems such as the conjugated polymers [6,7].

The statistical mechanics of LRI has a long history.
Already in the 60’s Jovce [8] studied thermodynamic
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properties of the static spherical model with long-range
ferromagnetic interaction between the spins. The static
critical exponents for LRI have been computed for the n-
vector model by use of the renormalisation group approach
[8–13] and the 1/n-expansion techniques [14]. There are
also Monte Carlo simulations for the one-dimensional
static model [15].

The dynamic properties of the LRI in the long-time
regime have also been studied as early as the 70’s. Suzuki
et al. [16] extended the dynamic theory developed by
Halperin et al. [17] to investigate an exponent which de-
scribes the critical slowing down in the n-vector model
with LRI for T ≥ Tc, with equilibrium initial conditions.
Folk and Moser studied a three-dimensional dynamical
model for liquids and demonstrated that the critical dy-
namics was affected by LRI [18]. The kinetic spherical
model showed that the short-time critical exponents were
modified by LRI [19].

In this paper, we study the short-time critical be-
haviour of the dynamic Ginzburg-Landau model with
long-range exchange interaction. In equilibrium at tem-
perature T the O(n) symmetric Hamiltonian is given by

H[s] ≡
∫

ddx
{
a

2
(5s)2 +

b

2
(5σ

2 s)2 +
τ

2
s2 +

g

4!
(s2)2

}
(1)

where s = (sα) are n-component order parameter fields, τ
is proportional to the reduced temperature T/Tc − 1 and
g is the coupling constant. The SRI model corresponds to
a = 1 and b = 0, whereas for the pure LRI model σ < 2,
a = 0 and b = 1. Since the case 0 < σ < d/2 is covered
by a mean-field theoretic description, and since for σ > 2
and d > 2 the model (1) belongs to the same universality
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class as the SRI model, we will restrict ourselves in the
present paper to the range d/2 < σ < min(2, d).

The dynamics to be discussed here, which is called
the model A dynamics [20], is controlled by the Langevin
equation

∂ts
α(x, t) = −λ δH[s]

δsα(x, t)
+ ξα(x, t)

where λ is the kinetic coefficient. The random forces ξ =
(ξα) are assumed to be Gaussian distributed

〈ξα(x, t)〉=0; 〈ξα(x, t)ξβ(x′, t′)〉=2λδαβδ(x− x′)δ(t− t′).

As mentioned above, the initial state is prepared
(macroscopically) at some very high temperature Ti. One
assumes that the initial condition s0(x) ≡ s(x, 0) has also
a Gaussian distribution P [s0] ∝ exp(−Hi[s0]) where

Hi[s0] ≡
∫

ddx
τ0
2

[s0(x) −m0(x)]2 ,

τ0 is proportional to Ti/Tc− 1 and m0(x) is the (spatially
varying) initial order parameter. Being away from criti-
cality (Ti � Tc), the initial correlation function will be
short-ranged. Since τ0 ∼ µσ (where µ is a renormalisation
momentum scale), the physically interesting fixed point is
τ∗0 = +∞, which corresponds to a sharply prepared initial
state with initial order m0 and zero correlation length.

Introducing a (purely imaginary) response field s̃(x, t)
[21,22], the generating functional for all connected corre-
lation and response functions is given by

W [h, h̃] = ln
∫
D(is̃, s) exp

{
− L[s̃, s]−Hi[s0]

+

∞∫
0

dt
∫

ddx(hs+ h̃s̃)

}
(2)

where

L[s̃, s] ≡
∞∫

0

dt
∫

ddx

×
{
s̃

[
ṡ+ λ

(
τ − a52 +b(−52)

σ
2
)
s+

λg

6
ss2

]
− λs̃2

}
·

(3)

Here we have used a pre-point discretisation with respect
to time so that the step function Θ(t = 0) = 0. Then the
contribution (proportional to Θ(0)) to L[s̃, s] arising from

the functional determinant det
[
δξ(x, t)
δs(x, t)

]
vanishes [23].

It is believed that the singularity of the temporal corre-
lation is essential to the short-time scaling and the scaling
can emerge in the early stage of the evolution even though
all spatial correlations are still short-ranged.

The system is now rapidly quenched to a temperature
T ' Tc. The order parameter will undergo a relaxation

process displaying an initial increase. As long as the cor-
relations are short-ranged and the spatial dimension d is
smaller than the critical dimension dc, the order parameter
follows a mean-field ordering process because the mean-
field critical temperature T (mf)

c is larger than the actual
critical temperature Tc. This ordering causes an amplifica-
tion of the initial order parameter. For d > dc mean-field
theory applies and there is no critical increase.

For the SRI models dc = 4. The longer is the inter-
action range, the stronger the suppression of the fluctua-
tions and hence the critical dimension of the LRI model is
smaller. Indeed, it turns out that dc = 2σ. Also one would
expect that the critical initial increase should be weaker
as the interaction range becomes longer.

Since the short-range exchange interaction is irrelevant
for d/2 < σ < σs ≡ 2−ηsr where ηsr is the Fisher exponent
at the SRI fixed point, one can consider only pure LRI.
We apply the ε-expansion theory to the LRI model in this
regime with ε ≡ 2σ − d. The critical initial order increase
appears in the LRI model for 1 ≤ d < dc. The scaling
behaviour of the critical initial slip is governed by the
exponents θ and θ′. They are computed as functions of d
and σ.

For σ close to (but larger than) d/2 the quantity ε is
very small and the numerical values of the exponents are
accurate when computed to order ε2.

However, when the interaction range is not very long,
the situation becomes more complicated, due to a subtle
competition between the SRI and the LRI fixed points
[10–13] Honkonen [12] computed the β-function of the
renormalisation group for the pure LRI model at three-
loops and found that the infrared LRI fixed point becomes
unstable for σ = σs. In the pure LRI model the exchange
interaction term is not renormalised, so that the anoma-
lous dimension of the field s(x, t) is zero, whereas in the
SRI model the field carries some anomalous dimension γ.
Taking the limit σ → 2 the expressions for the anomalous
dimension (and for other critical exponents) do not coin-
cide. However, as first shown by Sak [10] to the leading
non-trivial order and later by Honkonen and Nalimov [11]
to all order in ε′ ≡ 4− d, the anomalous dimension γ and
the other exponents are continuous functions of the pa-
rameter σ. This means that the scaling regime of the LRI
model is valid only for σ < σs, whereas for σ > σs the
scaling behaviour is described by the SRI model. At the
borderline value σ = σs the two descriptions yield equal
values for the critical exponents. Let us conclude here by
remarking that these last results were obtained solely for
static models.

The paper is organised as follows: in Section 2, the LRI
model with σ < σs is studied by the ε expansion method.
The scaling behaviour of the order parameter, correlation
and response functions, as well as the corresponding criti-
cal initial slip exponents, are obtained. Section 3 contains
conclusions and discussions.



Y. Chen et al.: The short-time critical behaviour of the Ginzburg-Landau model 291

2 The short-time scalings and exponents

Since the SRI is irrelevant for σ < σs, in this section we
take a = 0 and b = 1 in (3).

For g = 0, the generating functional (2) becomes Gaus-
sian and can be easily evaluated in momentum space. One
must take into account the initial condition, by imposing
the following boundary conditions:

s̃(x,∞) = 0 s0(x) = m0(x) + τ0
−1s̃(x, 0) .

The free response function Gp(t, t′) and the free corre-
lation function Cp(t, t′) are respectively

Gp(t, t′) = Θ(t − t′) exp[−λ(pσ + τ)(t − t′)]
Cp(t, t′) = C(e)

p (t− t′) + C(i)
p (t, t′),

with equilibrium part C(e)
p (t−t′) and initial part C(i)

p (t, t′)
defined by

C(e)
p (t− t′) ≡ 1

τ + pσ
exp[−λ(pσ + τ)|t− t′|]

C(i)
p (t, t′) ≡

(
τ−1
0 − 1

τ + pσ

)
exp[−λ(pσ + τ)(t + t′)].

One sets now a perturbation expansion ordered by the
number of loops in the Feynman diagrams. It is convenient
to consider the Dirichlet boundary conditions τ0 = +∞
and m0(x) = 0. The general case is recovered by treating
the parameters τ0−1 and m0(x) as additional perturba-
tions.

The model (2) with Dirichlet boundary conditions
must be renormalised. For this purpose notice that the
free correlation function simplifies to

C(D)
p (t, t′) ≡ 1

τ + pσ

× {exp[−λ(pσ + τ)|t− t′|]− exp[−λ(pσ + τ)(t + t′)]} .

By integrating over the internal momentum and time coor-
dinates one encounters ultraviolet divergences which can
be absorbed through the reparameterization of a finite
number of coupling constants and fields.

Through dimensional analysis, one can show that the
critical dimension dc = 2σ and hence it is convenient to
make an expansion in ε = 2σ − d. We will adopt the di-
mensional regularisation with minimal subtraction scheme
[24] and introduce renormalised quantities through multi-
plicative factors

sb = Z1/2
s s , s̃b = Z

1/2
es s̃ , λb = (Zs/Zes)1/2λ ,

τb = Z−1
s Zττ , gb = K−1

d µεZ−2
s Zuu ,

τ0b = (Z
es/Zs)1/2τ0 , s̃0b = (Z

esZ0)1/2s̃0 (4)

where the subscript b denotes the bare quantity and Kd ≡
21−dπ−

d
2 [Γ (d/2)]−1.

Some comments are in order:
(i) The graphs containing only the equilibrium part

of the correlation function are associated to 1PI diagrams

and can be made finite by the same renormalisation factors
as the translationally invariant theory.

(ii) In addition there are divergences arising for t+t′ =
0 from the initial part of the correlation function. Re-
markably enough, such divergences can be multiplicatively
removed if one associates them with n-point connected
Green functions. A simple dimensional analysis reveals
that new re-normalisations are required only in two-point
functions. Due to the Ward identities:

s0(x) = 0 ṡ0(x) = 2λs̃0(x)

which hold when inserted in the connected Green func-
tions, one is left with a single additional renormalisation
constant Z0.

At a fixed value of σ, a two-loop calculation gives the
following renormalisation constants:

Zs = 1 ; (5)

Z
es = 1− n+ 2

6ε
Bσu

2 ; (6)

Zu = 1 +
n+ 8

6ε
u+

[
(n+ 8)2

36ε2
− 5n+ 22

36ε
Dσ

]
u2 ; (7)

Zτ = 1+
n+ 2

6ε
u+
[

(n+ 2)(n+ 5)
36ε2

− n+ 2
24ε

Dσ

]
u2; (8)

Z0 = 1 +
n+ 2

6ε
u+

n+ 2
12ε2

×
[
n+ 5

3
+
(

2
σ

ln 2− 1
2
Dσ

)
ε

]
u2 . (9)

Here we have introduced

Bσ ≡ K−1
2σ

∫
d2σx

(2π)2σ
[1 + xσ + (e + x)σ]−2x−σ

with e a unit vector in the 2σ-dimensional space, and

Dσ ≡ ψ(1)− 2ψ(σ/2) + ψ(σ)

with ψ(x) the logarithmic derivative of the gamma func-
tion. For the particular case σ = 2, one has B2 =
1
2 ln(4/3), and D2 = 1. The calculation of the renormali-
sation constant Z0 is reported in Appendix A.

According to the general solution of the renormalisa-
tion group equation, the renormalised connected Green
function of N s-fields, Ñ s̃-fields, and M s̃0-fields at the
fixed point u∗ has the following scaling law:

GM
N eN

({x, t}, τ, τ−1
0 , λ, u∗, µ) =

l(d−σ+ηs)
N
2 +(d+σ+ηs̃)

fN
2 +(d+σ+ηs̃+η0)M2

×GM
N eN

({lx, lσ+ζ(u∗)t}, τ l−σ+κ(u∗), τ−1
0 lσ+ζ(u∗), λ, u∗, µ)

(10)

where ηs ≡ γ(u∗), ηs̃ ≡ γ̃(u∗), and η0 ≡ γ0(u∗).
The Wilson functions entering the renormalisation group
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equations are defined by

γ ≡ µ∂µ lnZs|0; β ≡ µ∂µu|0;
κ ≡ µ∂µ ln τ |0; ζ ≡ µ∂µ lnλ|0 = 1

2 (γ̃ − γ);
γ̃ ≡ µ∂µ lnZ

es|0; γ0 ≡ µ∂µ lnZ0|0

and are computed perturbatively from equations (5–9).
The symbol |0 means that µ-derivatives are calculated at
fixed bare parameters. For instance, at the two-loop level,
the Wilson function γ0 (related to the initial order param-
eter) is given by

γ0 = −n+ 2
6

[
1 +

(
2
σ

ln 2− 1
2
Dσ

)
u

]
u . (11)

By solving algebraically the equation β(u) = 0 one finds
the infrared LRI fixed point

u∗ =
6ε

n+ 8

[
1 +

2(5n+ 22)
(n+ 8)2

Dσε

]
+O(ε3) (12)

and subsequently the values of the Wilson functions at
this point.

In order to identify the critical exponents one can com-
pare the standard scaling form of the two-point correlation
function

G0
20(x− x′, t, t′, τ) =

|x− x′|−(d−2+η)f

(
|x− x′|

ξ
,
|x− x′|
t1/z

,
|x− x′|
t′1/z

)
to the equation (10) in which we have set N = 2, Ñ =
M = 0 and lx = 1. Here ξ ≡ τ−ν .

In this way we find the LRI critical exponents to second
order in ε [9,16]

η ≡ 2− σ + ηs = 2− σ;

z ≡ σ + ζ(u∗) = σ +
6(n+ 2)
(n+ 8)2

Bσε
2;

1/ν ≡ σ − κ(u∗) = σ − n+ 2
n+ 8

[
1 +

7n+ 20
(n+ 8)2

Dσε

]
ε.

Notice that the anomalous dimensions of s and s̃ are ηs =
2−σ+ η and η

es = η+ 2(z−σ) respectively, whereas that
of the initial order parameter η0 is given by equation (11)
at the fixed point (12).

Employing a short-time expansion of the fields s(x, t)
and s̃(x, t), as done in [1], one can derive the following
behaviour of the full response and correlation functions
for t > 0 but t′ → 0:

G(p, t, t′) = p−2+η+z

(
t

t′

)θ
f ′G (pξ, pzt)

C(p, t, t′) = p−2+η

(
t

t′

)θ−1

fC (pξ, pzt) . (13)

Here we defined the initial slip exponent θ and computed
it to second order in ε

θ≡− η0

2z
=

ε(n+ 2)
2σ(n+ 8)

{
1 +

[
7n+ 20
(n+ 8)2

Dσ +
12 ln 2
σ(n+ 8)

]
ε

}
·

Let us discuss now the scaling form of the order pa-
rameter which relaxes from a non-zero initial value m0

to zero. As mentioned above we can consider m0(x) an
additional time independent source coupled to the initial
response field s̃0(x). Owing to the renormalisation of the
initial order parameter

m0b(x) = (Z0Zes)−1/2m0(x),

no new renormalisation is required for the time-dependent
order parameter m(x, t) ≡ 〈s(x, t)〉|

eh=h=0. By taking a
homogeneous source m0(x) = m0, but keeping still τ∗0 =
+∞, we obtain the power law

m(t) = m0t
θ′fm

(
m0t

θ′+ d−2+η
2z , τt

1
νz

)
(14)

where the exponent θ′ is defined by

θ′ ≡ −ηs + ηs̃ + η0

2z
·

To second order in ε it has the value

θ′ =
ε(n+ 2)

2σ(n+ 8)

{
1 +

[
7n+ 20
(n+ 8)2

Dσ +
12 (ln 2− σBσ)

σ(n+ 8)

]
ε

}
·

As first indicated in [1] for the SRI model, the critical
exponents θ and θ′ are related by θ

′
= θ + (2− z − η)/z.

The function fm(x, y) appearing in (14) has a universal
behaviour at the critical point τ = 0: fm(0, 0) is finite;
while for x→∞, fm(x, 0) behaves like ∼ 1/x.

3 Discussions and conclusions

When the long range interactions are dominant, ε = 2σ−d
is small enough and the calculated values of θ′ and θ for
physical dimensions are numerically reliable. For instance,
we list in Table 1 the values corresponding to ε = 0.1 for
n = 1 and d = 1, 2, 3.

Table 1. The values of θ′, θ to ε = 0.1 for n = 1 and d =
1, 2, 3.

d = 1, σ = 0.55 d = 2, σ = 1.05 d = 3, σ = 1.55

θ′ 0.0383 0.0180 0.0117

θ 0.0408 0.0187 0.0120

In the following, we will focus the discussion on θ′. Let
us first notice that both the response and the correlation
functions measure the fluctuations of the order parameter
fields. Since θ and θ′ are positive, one expects, according
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Fig. 1. The exponent θ′ for n = 1 is plotted versus d. Curves
‘a’, ‘b’, ‘c’, and ‘d’ correspond to σ = 1/2, 1, 3/2 and 2 re-
spectively.

Fig. 2. The exponent θ′ for d = 2 is plotted versus 1/n. The
curves ‘a’, ‘b’, and ‘c’ correspond to σ = 1.05, 3/2, and 2
respectively.

to equations (13, 14), an initial increase of the fluctuations.
Of course, the increase depends upon σ and d.

In Figure 1 the exponent θ′ is plotted versus d for
σ = 1/2, 1, 3/2 and 2 respectively and n = 1. The value
σ = 2 corresponds to the SRI model. At fixed σ, the expo-
nent θ′ decreases when d increases, because fluctuations
are reduced as the dimension gets larger. At the critical
dimension dc = 2σ the value of θ′ becomes equal to zero.
Here other scaling laws would replace the power law.

Figure 2 shows that θ′ for d = 2 and small σ
monotonously increases with n. For larger σ it first reaches
a peak and then it decreases toward n → ∞. For other
values of the spatial dimension d the pictures are similar.
The increase of θ′ can be easily understood as more in-
ternal degrees of freedom (larger n) help the fluctuations
increase. Hence the critical behaviour is smooth in n and
can be studied in an 1/n-expansion. But for large σ one
can reach the opposite effect [25], the fluctuations decrease
when n exceeds some threshold value. This could be ex-
plained by assuming that the interactions among a huge

Fig. 3. The exponent θ′ for n = 1 is plotted versus σ. The
curve ‘a’ corresponds to d = 1. The curves ‘b’ and ‘c’ are drawn
for σ ≤ σs at d = 2 and d = 3, respectively; the curves ‘d’ and
‘e’ are based on equation (18) and describe the behaviour in
the region σ ≥ σs.

number of internal degrees strengthen the mean-fields, but
suppress the fluctuations.

In Figure 3 the exponent θ
′

is plotted versus σ for
n = 1 and d = 1, 2, 3. At fixed d the exponent θ′ decreases
when σ decreases, because the fluctuations are more sup-
pressed by interactions of longer range (σ smaller). In one
dimension, there is no SRI fixed point hence only the curve
controlled by the LRI fixed point is observed.

All the previous considerations were of qualitative na-
ture since they do not take into account the change of
the fixed point via σ. Of special interest in this respect
is the LRI fixed point (12). At σ = σs ≡ 2 − ηsr (where

ηsr ≡
n+ 2

2(n+ 8)2
ε′

2 and ε′ ≡ 4− d) and fixed d we have

ε = ε′ − n+ 2
4(n+ 8)2

ε′
2;

u∗ =
6ε′

n+ 8

[
1 +

3(3n+ 14)ε′

(n+ 8)2

]
≡ u∗SR;

θ′ =
ε′(n+ 2)
4(n+ 8)

[
1 +

6ε′

n+ 8

(
n+ 3
n+ 8

+ ln
3
2

)]
≡ θ′SR.

(15)

Here the subscript SR means short-range regime.
In order to explore the limitation of σ → 2 of the LRI,

we make a double expansion in ε and α ≡ 1− σ/2 with α
of the order ε or smaller. The infrared fixed point to order
ε2 is located at

u∗wlr =
6ε

n+ 8

{
1 +

ε

(n+ 8)2

[
3(3n+ 14) + (n+ 2)

α

α+ ε

]}
·

(16)

Here the subscript wlr (weakly-long-range) means that α
is at most of order ε. The critical initial slip exponent
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in the weakly-long-range limit can be also computed to
this order:

θ′wlr =
ε(n+ 2)
4(n+ 8)

×
{

1 + α+
ε

n+ 8

[
6
(
n+ 3
n+ 8

+ ln
3
2

)
+
n+ 2
n+ 8

α

α+ ε

]}
·

(17)

Since α is actually of order ε2 it can be set to zero in (16)
and (17), and taking into account that ε = ε′+O(ε2), one
gets

u∗wlr =
6

n+ 8

[
ε+

3(3n+ 14)ε′2

(n+ 8)2

]
;

θ′wlr =
n+ 2

4(n+ 8)

[
ε+

6ε′2

n+ 8

(
n+ 3
n+ 8

+ ln
3
2

)]
. (18)

Clearly the difference between the weakly-long-range and
short-range regimes comes from the difference between ε
and ε′ as given by equation (15). From the work of [12]
we know that the LRI fixed point becomes instable at
σ = σs. The signal of instability appears however at three-
loops. Our work shows that already at two-loops a new
fixed point develops, driving the pure LRI model to the
intermediate weak-long-range regime. The σ dependence
of the critical exponent θ′ in this regime is linear and is
shown in the curves d and e of Figure 3.

We summarise now our results. We studied the short-
time critical behaviour of the Ginzburg-Landau models
with LRI in the ε-expansion up to two-loop order. We
observed an initial critical increase for dimensions smaller
than dc and for the interaction range d/2 < σ < d. We
obtained the universal critical exponents θ and θ′ of the
initial slip as functions of d, n, and the interaction range
parameter σ. The limit in which pure LRI is approaching
the SRI has been also discussed in some detail.

Finally, our results may be checked by Monte Carlo
simulations (e.g. the method of [15]) as in the case of
the SRI [2]. For experimental purposes, the temperature
quenched to Tc can be stabilized by a magnetic field firstly
applied, and then removed. The experiments which try to
test our results may be carried out in physical systems
such as ionic solutions and the conjugated polymers.

The authors are grateful to H.J. Luo and B. Zheng for fruit-
ful discussions, and thank C. Untch for help in using the
computers.

Appendix A: The calculation of Z0

In order to determine the renormalisation constant Z0,
we calculate the two-point function 〈s(−q, t)s̃(q, t′)〉, with
one leg attached to the initial surface t′ = 0

〈s(−q, t)s̃(q, 0)〉 =
∫ ∞

0

dt′〈s(−q, t)s̃(q, t′)〉(e)Γ
(i)
10 (q, t′),

Fig. 4. Diagrams contributing to Γ
(i)
10 (q, t) up to two loops.

by using the graphs of Figure 4.
In these diagrams C(D)

p (t, t′) and Gp(t, t′) are repre-
sented by solid lines with and without arrows respectively.
The small circle means that one time argument is set equal
to zero. The factor 〈s(−q, t)s̃(q, t′)〉(e) denotes the contri-
bution to the two-point function coming only from the
equilibrium part C

(e)
p (t, t′), whereas the residual factor

Γ
(i)
10 (q, t′) is the sum of the amplitudes with at least one

initial part C(i)
p (t, t′).

We write the singular part of Γ (i)
10 at the critical point

τ = 0 in the form

Γ
(i)
10 (q = 0, t) = I1 + I2 + I3 + I4 + I5 (A.1)

where Ij with j = 1, 2, 3, 4, 5 is the contribution of the jth
diagram in Figure 4. These contributions are given by

I1 = δ(t);

I2 = −λgn+ 2
6

∫
ddp

(2π)d
C(i)
p (t, t) ;

I3 = 2(λg)2

(
n+ 2

6

)2 ∫ t

0

dt′
∫

ddp
(2π)d

C(i)
p (t, t)

×
∫

ddp′

(2π)d
Gp′(t, t′)C

(D)
p′ (t, t′);

I4 = (λg)2n+ 2
6

∫ t

0

dt′
∫

ddp
(2π)d

ddp′

(2π)d

×Gp+p′(t, t′)
(

2C(i)
p (t, t′)C(e)

p′ (t, t′)

+C(i)
p (t, t′)C(i)

p′ (t, t′)
)

; (A.2)

I5 = (λg)2

(
n+ 2

6

)2 ∫ t

0

dt′

×
∫

ddp
(2π)d

ddp′

(2π)d
C(i)
p (t, t)C(i)

p′ (t′, t′) . (A.3)

By using the formulae∫ ∞
0

dxxν−1e−µx = µ−νΓ (ν);∫ t

0

dxxν−1(t− x)µ−1 =
Γ (ν)Γ (µ)
Γ (ν + µ)

tν+µ−1
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valid for Re ν > 0 and Reµ > 0, it is not difficult to obtain

I2 =
n+ 2

6σ
λgKdΓ (1− ε

σ
)(2λt)−1+ε/σ , (A.4)

I3 = −
(
n+ 2

3

)2

λ(gKd)2Γ
2(1− ε

σ )
2σε

×
[
Γ 2(1 + ε

σ )
Γ (1 + 2ε

σ )
− 1

2

]
(2λt)−1+2ε/σ (A.5)

and

I5 =
(
n+ 2

6

)2 1
2σε

λ(gKd)2Γ 2(1− ε

σ
)(2λt)−1+2ε/σ .

(A.6)

By integrating in (A.2) over t′ and over the length of p′,
one finds

I4 =
n+ 2

6σ
λ(gKd)2Γ

(
1− 2ε

σ

)
×
(
−I(1)

4 + I
(2)
4 +O(ε)

)
(2λt)−1+2ε/σ

where

I
(1)
4 ≡ K−1

d

∫
ddx

(2π)d
1

xσ(e + x)σ
;

I
(2)
4 ≡ K−1

d

∫
ddx

(2π)d
1

xσ(e + x)σ(1 + xσ)
,

with e the unit vector along the d-axis. The first integral
is easily done with the result

I
(1)
4 =

K−1
d

2dπd/2
Γ 2(d−σ2 )Γ (2σ−d

2 )
Γ 2(σ2 )Γ (d− σ)

=
1
ε

+
1
2
Dσ +O(ε) .

In order to carry out I(2)
4 , one can use the following ex-

pansion of 1/(e + x)σ:

(x2 + 2x · e + 1)−σ/2 = [max(x, 1)]−σ

×
∞∑
n=0

[min(x, 1/x)]n (−1)ncσ/2n (x̂ · e)

where x̂ stands for the unit vector of x and cσ/2n (x̂ · e) are
Gegenbauer polynomials. This leads to∫

dx̂(x + e)−σ =

{
1 x ≤ 1
x−σ x ≥ 1

which can be then used to find the leading contribution
to I(2)

4

I
(2)
4 =

2
σ

ln 2 +O(ε).

Finally, we get

I4 =
n+ 2

6σ
λ(gKd)2Γ

(
1− 2ε

σ

)
×
(

2
σ

ln 2− 1
2
Dσ −

1
ε

+O(ε)
)

(2λt)
2ε
σ −1 . (A.7)

The substitution of equations (A.4–A.7) in (A.1) leads to
an explicit expression for Γ (i)

10 (q = 0, t) up to terms of
order ε.

We renormalise now according to (4) the (bare)
quantities entering this expression. For the fields s, s̃ and
the coupling constant g a one-loop renormalisation will
be sufficient. All the necessary information is available in
equations (5–7). The residual singularity is then removed
by requiring [1]

Z
−1/2
0

∫ ∞
0

dte−iωtΓ
(i)
10 (q = 0, t)b = finite for ε→ 0.

Here the subscript b denotes the expression of Γ (i)
10 ob-

tained above in which only bare quantities appear. From
this condition we compute Z0 as given by equation (9).
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